Curious Discovery On Mars Of A Gateway Carved Into The Rock!

Mars

 

The photo was taken by Curiosity's Mastcam on May 7. At the heart of a geological feature called  the Greenheugh Pediment . Ten years that he explores the Red Planet and the NASA rover seems not to want to finish giving us strong emotions. This time with this amazing structure that looks like a door dug by an extraterrestrial civilization in the Martian rock. Almost like the entrance door to one of our pyramids. Enough to excite many imaginations.

However, the reality may disappoint you. Because what we see on this image is much more likely a fracture formed quite naturally, by shearing. The result, perhaps, of a kind of tension that ended up partially breaking the rock. No doubt during an earthquake like the one recently recorded by the InSight mission .

Note also that the size of the structure in question remains unknown. It might as well be only a few centimeters. After the strange cubic structure discovered on the Moon by the Chinese rover  Yutu-2, pareidolia -- the phenomenon where we see known structures where there is nothing extraordinary, such as when we recognize shapes to the clouds -- moreover which continues to make us dream -- or fear -- one day encountering an extraterrestrial life form.

By detailing the images sent back by the NASA Curiosity rover, some thought they had detected an extraterrestrial door carved into the Martian rock. © NASA, JLP-Caltech, MSSS 

What Is Planet Mars

Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, being larger than only Mercury. In English, Mars carries the name of the Roman god of war. 

Mars is a terrestrial planet with a thin atmosphere, and has a crust primarily composed of elements similar to Earth's crust, as well as a core made of iron and nickel. Mars has surface features such as impact craters, valleys, dunes, and polar ice caps. It also has two small and irregularly shaped moons, Phobos and Deimos.

Some of the most notable surface features on mars include features such as Olympus Mons, the largest volcano and highest known mountain on any Solar System planet, and Valles Marineris, one of the largest canyons in the Solar System. 

The smooth Borealis basin in the Northern Hemisphere covers 40% of the planet and may be a giant impact feature. The days and seasons on Mars are comparable to those of Earth as the planets have a similar rotation period and tilt of the rotational axis relative to the ecliptic plane. 

Liquid water on the surface of Mars cannot exist due to low atmospheric pressure, which is less than 1% of the atmospheric pressure on Earth. Both of Mars's polar ice caps appear to be made largely of water. Multiple lines of evidence suggest that Mars was wetter in the distant past, and thus possibly more suited for life. However, whether life ever did exist there, and if it could have survived to the present day, remain unanswered questions.

Mars has been explored by several uncrewed spacecraft, beginning with Mariner 4 in 1965. NASA's Viking 1 lander transmitted the first images from the Martian surface in 1976. Two countries have successfully deployed rovers on Mars, the United States first doing so with Sojourner in 1997 and China with Zhurong in 2021.

There are also planned future missions to Mars, such as a Mars sample-return mission set to happen in 2026, and the Rosalind Franklin rover mission, which was intended to launch in 2018 but was delayed to 2024.

Mars can easily be seen from Earth with the naked eye, as can its striking reddish coloring. This appearance, due the iron oxide prevalent on its surface, has led to Mars often being called the Red Planet.

It is among the brightest objects in Earth's sky, with an apparent magnitude that reaches −2.94, comparable to that of Jupiter and surpassed only by Venus, the Moon and the Sun. Historically, Mars has been observed since ancient times, and over the centuries, has been featured in culture and the arts in ways that have reflected humanity's growing knowledge of it.

Habitability and search for life

During the late nineteenth century, it was widely accepted in the astronomical community that Mars had life-supporting qualities, including oxygen and water. However, in 1894 W. W. Campbell at Lick Observatory observed the planet and found that "if water vapor or oxygen occur in the atmosphere of Mars it is in quantities too small to be detected by spectroscopes then available". 

That observation contradicted many of the measurements of the time and was not widely accepted. Campbell and V. M. Slipher repeated the study in 1909 using better instruments, but with the same results. 

It wasn't until the findings were confirmed by W. S. Adams in 1925 that the myth of the Earth-like habitability of Mars was finally broken. However, even in the 1960s, articles were published on Martian biology, putting aside explanations other than life for the seasonal changes on Mars. Detailed scenarios for the metabolism and chemical cycles for a functional ecosystem were being published as late as 1962.

The current understanding of planetary habitability – the ability of a world to develop environmental conditions favorable to the emergence of life – favors planets that have liquid water on their surface. Most often this requires the orbit of a planet to lie within the habitable zone, which for the Sun is estimated to extend from within the orbit of Earth to about that of Mars.

During perihelion, Mars dips inside this region, but Mars's thin (low-pressure) atmosphere prevents liquid water from existing over large regions for extended periods. The past flow of liquid water demonstrates the planet's potential for habitability. Recent evidence has suggested that any water on the Martian surface may have been too salty and acidic to support regular terrestrial life.

The lack of a magnetosphere and the extremely thin atmosphere of Mars are a challenge: the planet has little heat transfer across its surface, poor insulation against bombardment of the solar wind and insufficient atmospheric pressure to retain water in a liquid form (water instead sublimes to a gaseous state). Mars is nearly, or perhaps totally, geologically dead; the end of volcanic activity has apparently stopped the recycling of chemicals and minerals between the surface and interior of the planet.

In situ investigations have been performed on Mars by the Viking landers, Spirit and Opportunity rovers, Phoenix lander, and Curiosity rover. Evidence suggests that the planet was once significantly more habitable than it is today, but whether living organisms ever existed there remains unknown. 

The Viking probes of the mid-1970s carried experiments designed to detect microorganisms in Martian soil at their respective landing sites and had positive results, including a temporary increase of CO2 production on exposure to water and nutrients. This sign of life was later disputed by scientists, resulting in a continuing debate, with NASA scientist Gilbert Levin asserting that Viking may have found life.

Tests conducted by the Phoenix Mars lander have shown that the soil has an alkaline pH and it contains magnesium, sodium, potassium and chloride.

The soil nutrients may be able to support life, but life would still have to be shielded from the intense ultraviolet light. A 2014 analysis of Martian meteorite EETA79001 found chlorate, perchlorate, and nitrate ions in sufficiently high concentration to suggest that they are widespread on Mars. UV and X-ray radiation would turn chlorate and perchlorate ions into other, highly reactive oxychlorines, indicating that any organic molecules would have to be buried under the surface to survive.

Scientists have proposed that carbonate globules found in meteorite ALH84001, which is thought to have originated from Mars, could be fossilized microbes extant on Mars when the meteorite was blasted from the Martian surface by a meteor strike some 15 million years ago. 

This proposal has been met with skepticism, and an exclusively inorganic origin for the shapes has been proposed. Small quantities of methane and formaldehyde detected by Mars orbiters are both claimed to be possible evidence for life, as these chemical compounds would quickly break down in the Martian atmosphere.

Alternatively, these compounds may instead be replenished by volcanic or other geological means, such as serpentinite. Impact glass, formed by the impact of meteors, which on Earth can preserve signs of life, has also been found on the surface of the impact craters on Mars. Likewise, the glass in impact craters on Mars could have preserved signs of life, if life existed at the site

Moons

Mars has two relatively small (compared to Earth's) natural moons, Phobos (about 22 kilometres (14 mi) in diameter) and Deimos (about 12 kilometres (7.5 mi) in diameter), which orbit close to the planet. Asteroid capture is a long-favored theory, but their origin remains uncertain.

Both satellites were discovered in 1877 by Asaph Hall; they are named after the characters Phobos (panic/fear) and Deimos (terror/dread), who, in Greek mythology, accompanied their father Ares, god of war, into battle. Mars was the Roman equivalent to Ares. In modern Greek, the planet retains its ancient name Ares (Aris: Άρης).

From the surface of Mars, the motions of Phobos and Deimos appear different from that of the Moon. Phobos rises in the west, sets in the east, and rises again in just 11 hours. Deimos, being only just outside synchronous orbit – where the orbital period would match the planet's period of rotation – rises as expected in the east but slowly.

Because the orbit of Phobos is below synchronous altitude, the tidal forces from the planet Mars are gradually lowering its orbit. In about 50 million years, it could either crash into Mars's surface or break up into a ring structure around the planet.

The origin of the two moons is not well understood. Their low albedo and carbonaceous chondrite composition have been regarded as similar to asteroids, supporting the capture theory. The unstable orbit of Phobos would seem to point towards a relatively recent capture. But both have circular orbits, near the equator, which is unusual for captured objects and the required capture dynamics are complex. Accretion early in the history of Mars is plausible, but would not account for a composition resembling asteroids rather than Mars itself, if that is confirmed.

A third possibility is the involvement of a third body or a type of impact disruption. More-recent lines of evidence for Phobos having a highly porous interior, and suggesting a composition containing mainly phyllosilicates and other minerals known from Mars, point toward an origin of Phobos from material ejected by an impact on Mars that reaccreted in Martian orbit, similar to the prevailing theory for the origin of Earth's moon. 

Although the visible and near-infrared (VNIR) spectra of the moons of Mars resemble those of outer-belt asteroids, the thermal infrared spectra of Phobos are reported to be inconsistent with chondrites of any class. It is also possible that Phobos and Deimos are fragments of an older moon, formed by debris from a large impact on Mars, and then destroyed by a more recent impact upon itself.

Mars may have moons smaller than 50 to 100 metres (160 to 330 ft) in diameter, and a dust ring is predicted to exist between Phobos and Deimos.




Comments

Popular posts from this blog

Giant Space Telescopes Could Be Made Out Of Liquid

TOP 10 BIGGEST TELESCOPES IN THE WORLD